Asymptotic Expected Number of Passages of a Random Walk Through an Interval

نویسندگان

  • Offer Kella
  • Wolfgang Stadje
چکیده

In this note we find a new result concerning the asymptotic expected number of passages of an finite or infinite interval (x, x + h] as x → ∞ for a random walk with increments having a positive expected value. If the increments are distributed like X, then the limit for 0 < h < ∞ turns out to have the form Emin(|X|, h)/EX which unexpectedly is indpendent of h for the special case where |X| ≤ b < ∞ almost surely and h > b. When h =∞ the limit is Emax(X, 0)/EX. For the case of a simple random walk, a more pedestrian derivation of the limit is given and is observed to be consistent with the general results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Order Moment Asymptotic Expansions for a Randomly Stopped and Standardized Sum

This paper establishes the first four moment expansions to the order o(a^−1) of S_{t_{a}}^{prime }/sqrt{t_{a}}, where S_{n}^{prime }=sum_{i=1}^{n}Y_{i} is a simple random walk with E(Yi) = 0, and ta is a stopping time given by t_{a}=inf left{ ngeq 1:n+S_{n}+zeta _{n}>aright}‎ where S_{n}=sum_{i=1}^{n}X_{i} is another simple random walk with E(Xi) = 0, and {zeta _{n},ngeq 1} is a sequence of ran...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R&nbsp;is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

Random Walk or Chaos: A Formal Test on the Lyapunov Exponent1

A formal test on the Lyapunov exponent is developed to distinguish a random walk model from a chaotic system. The test is based on the Nadaraya-Watson kernel estimate of the Lyapunov exponent. We show that the estimator is consistent: The estimated Lyapunov exponent converges to zero under the random walk hypothesis, while it converges to a positive constant for the chaotic system. The test is ...

متن کامل

The Maximum on a Random Time Interval of a Random Walk with Long-tailed Increments and Negative Drift

Random walks with long-tailed increments have many important applications in insurance, finance, queueing networks, storage processes, and the study of extreme events in nature and elsewhere. See, for example, Embrechts et al. (1997), Asmussen (1998, 1999) and Greiner et al. (1999) for some background. In this paper we study the distribution of the maximum of such a random walk over a random ti...

متن کامل

Asymptotic algorithm for computing the sample variance of interval data

The problem of the sample variance computation for epistemic inter-val-valued data is, in general, NP-hard. Therefore, known efficient algorithms for computing variance require strong restrictions on admissible intervals like the no-subset property or heavy limitations on the number of possible intersections between intervals. A new asymptotic algorithm for computing the upper bound of the samp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Applied Probability

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2013